Search results for "Asymptotic expansions"

showing 5 items of 5 documents

Asymptotic stability of solutions to Volterra-renewal integral equations with space maps

2012

Abstract In this paper we consider linear Volterra-renewal integral equations (VIEs) whose solutions depend on a space variable, via a map transformation. We investigate the asymptotic properties of the solutions, and study the asymptotic stability of a numerical method based on direct quadrature in time and interpolation in space. We show its properties through test examples.

Asymptotic analysisApplied MathematicsNumerical analysisMathematical analysisvolterra renewalSpace mapVolterra integral equationMethod of matched asymptotic expansionsIntegral equationVolterra integral equationAsymptotic behaviorsymbols.namesakeExponential stabilityRenewal equationAsymptotologysymbolsNyström methodNumerical methodsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Matched asymptotic solution for the solute boundary layer in a converging axisymmetric stagnation point flow

2007

Abstract A novel boundary-layer solution is obtained by the method of matched asymptotic expansions for the solute distribution at a solidification front represented by a disk of finite radius R 0 immersed in an axisymmetric converging stagnation point flow. The detailed analysis reveals a complex internal structure of the boundary layer consisting of eight subregions. The development of the boundary layer starts from the rim region where the concentration, according to the obtained similarity solution, varies with the radius r along the solidification front as ∼ln 1/3 ( R 0 / r ). At intermediate radii, where the corresponding concentration is found to vary as ∼ln( R 0 / r ), the boundary …

Fluid Flow and Transfer ProcessesConvectionMaterials scienceMechanical EngineeringRotational symmetryInner coreThermodynamicsGeometryRadiusCondensed Matter PhysicsSimilarity solutionMethod of matched asymptotic expansionsPhysics::Fluid DynamicsBoundary layerDiffusion (business)
researchProduct

Nonlinear Critical Layers in Barotropic Stability

1991

Abstract Applying the method of matched asymptotic expansions (MAE) to the shallow water equations on a rotating sphere, the structure of critical layers that occur in the linear and inviscid analysis of neutral disturbances of barotropic zonal flows is investigated, assuming that the critical layers are controlled by nonlinearity rather than viscosity or nonparallel flow effects. It turns out that nonlinearity is insufficient to resolve the critical layer singularity completely. It suffices however to connect linear and nondissipative solutions across critical latitudes.

PhysicsAtmospheric Sciencebusiness.industryMechanicsMethod of matched asymptotic expansionsPhysics::Fluid DynamicsNonlinear systemViscositySingularityOpticsFlow (mathematics)Inviscid flowBarotropic fluidbusinessShallow water equationsPhysics::Atmospheric and Oceanic PhysicsJournal of the Atmospheric Sciences
researchProduct

Unfolding of saddle-nodes and their Dulac time

2016

Altres ajuts: UNAB10-4E-378, co-funded by ERDF "A way to build Europe" and by the French ANR-11-BS01-0009 STAAVF. In this paper we study unfoldings of saddle-nodes and their Dulac time. By unfolding a saddle-node, saddles and nodes appear. In the first result (Theorem A) we give a uniform asymptotic expansion of the trajectories arriving at the node. Uniformity is with respect to all parameters including the unfolding parameter bringing the node to a saddle-node and a parameter belonging to a space of functions. In the second part, we apply this first result for proving a regularity result (Theorem B) on the Dulac time (time of Dulac map) of an unfolding of a saddle-node. This result is a b…

[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Block (permutation group theory)Dynamical Systems (math.DS)Space (mathematics)01 natural sciencesCombinatoricsQuadratic equationFOS: MathematicsMathematics - Dynamical Systems0101 mathematicsBifurcationSaddleMathematicsPeriod functionApplied MathematicsUnfolding of a saddle-node010102 general mathematics16. Peace & justice010101 applied mathematicsMSC: 34C07Asymptotic expansions34C07Node (circuits)Asymptotic expansionAnalysis
researchProduct

Asymptotic expansions and causal representations through the loop-tree duality

2022

Large-scale particle physics experiments have provided a vast amount of high-quality data during the last decades. A leading role has been played by the Large Hadron Collider where the evaluation and analysis of its second run is currently still in progress while the third run is about to start, promising ever higher precision data of particle collisions and subsequent decays. The agreement between experimental observations and theoretical predictions using the Standard Model of Particle Physics is excellent. Indeed, this is a problem since there are currently few clues for how genuine shortcomings of the model can be overcome. New physics phenomena can appear either at higher energies, whi…

loop-tree duality:FÍSICA [UNESCO]UNESCO::FÍSICAasymptotic expansionsquantum field theory
researchProduct